ent-Kaurane Diterpenes and Further Constituents from Wedelia trilobata

by Yin Qiang^a), Dao-Lin Du^b), Yan-Jun Chen^c), and Kun Gao*^a)

 ^a) State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China (phone: +86-931-8912592; fax: +86-931-8912582; e-mail: npchem@lzu.edu.cn)
^b) School of Environment, Jiangsu University, Zhenjiang 212013, P. R. China
^c) School of Biotechnology and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, P. R. China

Two new *ent*-kaurane diterpenes, wedelidins A (8) and B (9), together with eighteen other constituents, including the sesquiterpenoids 1 and 2, *ent*-kaurane diterpenes 3-7, triterpenoids 10 and 11, steroids 12-14, and flavonoids 15-17 as well as benzene derivatives 18-20, were isolated from the aerial parts of *Wedelia trilobata*. The structures of wedelidins A (8) and B (9) were elucidated by extensive spectroscopic analyses (including UV, IR, NMR, and MS). Furthermore, the structures of compounds 2 and 3 were confirmed by X-ray single-crystal diffraction analyses.

Introduction. – Wedelia trilobata L. (Asteraceae) is a perennial plant. In traditional herbal medicine, *W. trilobata* has been used for the treatment of fever and malaria in Vietnam [1]. Previous investigations revealed that the secondary metabolites from this plant mainly consisted of terpenoids [1-3], flavonoids [4], and polyacetylenes as well as steroids [5].

As part of our ongoing search for terpenoids and steroids from natural sources [6–8], we investigated the aerial parts of *W. trilobata* from a phytochemical viewpoint, which led to the isolation of the 20 secondary metabolites 1-20, including the two sesquiterpenoids 1 and 2, the seven *ent*-kaurane diterpenes 3-9, the two triterpenoids 10 and 11, the three steroids 12-14, and the three flavonoids 15-17 as well as the three benzene derivatives 18-20. Among them, compounds 8 and 9, named wedelidin A and B, resp., are two new *ent*-kaurane diterpenes. Herein, we will report the isolation and structural elucidation of these isolates. In addition, the ¹³C-NMR data of the five known *ent*-kaurane diterpenes 3-7 were completely assigned here by 2D-NMR spectra (¹H, ¹H-COSY, HSQC, and HMBC), and the structures of compounds 2 and 3 were further confirmed by X-ray single-crystal diffraction analyses.

Results and Discussion. – Wedelidin A (8) was obtained as a white powder. The negative-ion-mode ESI-MS showed a quasimolecular ion at m/z 463.1 ($[M-H]^-$), which, combined with analyses of ¹³C-NMR data and the DEPT experiment, indicated a molecular formula C₂₉H₃₆O₅. This hypothesis was also supported by the quasimolecular ion at m/z 487.2445 ($[M + Na]^+$) in the positive-ion-mode HR-ESI-MS, corresponding to 12 degrees of unsaturation. Its IR spectrum showed absorptions at 3347 (OH), 1708 (C=O), and 1567 and 1470 cm⁻¹ (aromatic C=C). The existence of a

^{© 2011} Verlag Helvetica Chimica Acta AG, Zürich

н

Н

Ĥ

″ОН 13

Ĥ

Н

10

"Н

HO

cinnamate (=(2E)-3-phenylprop-2-enoate) ester function was supported by the following ¹H- and ¹³C-NMR data: $\delta(H)$ 6.47 (d, J = 15.9 Hz, 1 H), 7.70 (d, J =15.9 Hz, 1 H), 7.37–7.39 (overlap, 3 H), and 7.52–7.54 (overlap, 2 H), and $\delta(C)$ 166.7 (s), 118.3 (d), 145.1 (d), 134.7 (s), 128.1 (d), 128.9 (d), and 130.3 (d) (Tables 1 and 2). Besides the above moiety, the remaining twenty C-atoms included a trisubstituted C=C bond (δ (H) 5.53 (br. s); δ (C) 137.1 (d) and 141.3 (s)), a COOH group (δ (C) 180.4 (s)), an O-bearing CH group (δ (H) 4.70 (dd, J = 4.2, 12.0 Hz); δ (C) 78.8 (d)), and an O-bearing CH₂ group (δ (H) 4.57 (br. s); δ (C) 75.1 (t)). Further analyses indicated a closely similar NMR pattern of compound 8 to that of (3α) -3-(cinnamoyloxy)-ent-kaur-16-en-19-oic acid (7), suggesting the structure of an *ent*-kaurane diterpenoid for 8 [2]. The cinnamate ester moiety should be bonded to the position C(3) based on the HMBC from H–C(3) to C(1') (Fig. 1). The major difference in the NMR data between compounds 8 and 7 was that the signals of the above-described O-bearing CH_2 group and the trisubstituted C=C bond in ring D of 8 appeared instead of those of the exocyclic $CH_2 = C(16)$ moiety of 7. The NMR data of ring D of 8 were also supported by the HMBC experiment (Fig. 1). The relative configuration of compound 8 was established by comparison of its NMR data with those of 7. The H–C(3) signal of 8 appeared as dd (J = 4.2 and 12.0 Hz) with a closely similar coupling pattern to that observed for 7 (dd, J = 4.4 and 12.0 Hz) [2]. So, the cinnamate ester moiety should be α oriented in compound 8. Finally, the structure of wedelidin A (8) was elucidated as (3α) -3-(cinnamoyloxy)-17-hydroxy-*ent*-kaur-15-en-19-oic acid.

Wedelidin B (9) was obtained as a white powder. Its positive-ion-mode HR-ESI-MS revealed a quasimolecular ion at m/z 463.2483 ($[M + H]^+$), suggesting a molecular

	8 ^a)	9 ^b)		
CH ₂ (1)	2.03 - 2.05(m), 0.99 - 1.12(m)	2.03 - 2.06 (m), 1.10 - 1.12 (m)		
$CH_2(2)$	2.45 $(q, J = 12.0)$, 1.81 (overlap)	2.45 $(q, J = 12.0)$, 1.80 (overlap)		
H-C(3)	$4.70 \ (dd, J = 4.2, 12.0)$	4.70 (dd, J = 4.2, 12.0)		
H-C(5)	1.17 (overlap)	1.15 (overlap)		
$CH_2(6)$	$1.88 - 1.91 \ (m), \ 1.70 - 1.73 \ (m)$	1.88 - 1.92 (m), 1.71 - 1.75 (m)		
$CH_2(7)$	1.93 - 1.96 (m), 1.09 - 1.11 (m)	1.99-2.02(m), 1.14-1.18(m)		
H–C(9)	1.21 - 1.24 (m)	1.24 - 1.29(m)		
CH ₂ (11)	1.55-1.60 (overlap, 2 H)	1.55-1.60 (overlap, 2 H)		
$CH_2(12)$	1.58 (overlap), 1.50 (overlap)	1.60 (overlap), 1.50 (overlap)		
H-C(13)	2.62 (br. s)	3.06 (br. s)		
CH ₂ (14)	1.89 - 1.91 (m), 1.50 - 1.54 (m)	2.06 - 2.09(m), 1.47 - 1.51(m)		
H-C(15)	5.53 (br. s)	6.59 (br. s)		
CH ₂ (17) or H–C(17)	4.57 (br. s)	9.75 (s)		
Me(18)	1.35(s)	1.34(s)		
Me(20)	1.09(s)	1.09(s)		
H–C(2')	6.47 $(d, J = 15.9)$	6.47 (d, J = 16.2)		
H–C(3')	7.70 (d, J = 15.9)	7.70 (d, J = 16.2)		
H _o	7.52-7.54 (overlap, 2 H)	7.52-7.54 (overlap, 2 H)		
H _m	7.37–7.39 (overlap, 2 H)	7.37 – 7.39 (overlap, 2 H)		
H_p	7.37–7.39 (overlap)	7.37–7.39 (overlap)		
^a) Measured at 300 MHz.	^b) Measured at 600 MHz.			

Table 1. ¹H-NMR Data (CDCl₃) of Compounds 8 and 9. δ in ppm, J in Hz.

	3 ^a)	4 ^a)	5 ^a)	6 ^a)	7 ^a)	8 ^b)	9°)
C(1)	41.1 (<i>t</i>)	40.7 (t)	38.8 (t)	38.8 (t)	38.9 (t)	38.8 (t)	39.7 (t)
C(2)	19.5(t)	20.1(t)	24.2(t)	24.0(t)	24.2(t)	24.1(t)	24.1(t)
C(3)	38.2(t)	38.2(t)	78.7(d)	78.8(d)	79.0 (d)	78.8(d)	78.6(d)
C(4)	44.7(s)	44.7 (s)	48.0 (s)	48.1 (s)	48.1 (s)	48.1 (s)	48.0(s)
C(5)	57.5 (d)	46.6(d)	56.5(d)	56.4(d)	56.5(d)	56.1(d)	55.9 (d)
C(6)	22.3(t)	18.4(t)	21.5(t)	21.5(t)	21.6(t)	20.5(t)	20.1(t)
C(7)	41.7(t)	29.7(t)	39.5 (t)	39.5 (t)	39.5(t)	39.1(t)	38.0(t)
C(8)	44.2(s)	42.3(s)	43.8 (s)	43.8 (s)	43.9 (s)	49.0 (s)	50.6 (s)
C(9)	55.6 (d)	158.5 (s)	55.2 (d)	55.1 (d)	55.2 (d)	47.4(d)	46.1 (<i>d</i>)
C(10)	40.1 (s)	38.8 (s)	43.8 (s)	43.8 (s)	39.4 (s)	39.6 (s)	38.8(s)
C(11)	18.4(t)	114.9 (d)	18.5(t)	18.5(t)	18.5(t)	19.0(t)	18.8(t)
C(12)	33.5(t)	37.9(t)	33.1(t)	33.0(t)	33.1(t)	25.3(t)	25.1(t)
C(13)	44.3 (d)	41.2(d)	43.9(d)	43.9 (d)	43.8(d)	41.5(d)	37.8 (d)
C(14)	40.1(t)	44.9 (t)	41.0(t)	41.0(t)	41.0(t)	43.6 (t)	42.8(t)
C(15)	49.4(t)	50.3(t)	48.8(t)	48.7(t)	48.8(t)	137.1(d)	161.0(d)
C(16)	156.3 (s)	155.9 (s)	155.3 (s)	155.3 (s)	155.3 (s)	141.3 (s)	148.8(s)
C(17)	103.7(t)	105.5(t)	103.3(t)	103.3(t)	103.3(t)	75.1(t)	189.4(d)
C(18)	29.4(q)	28.2(q)	24.0(q)	23.9(q)	23.9(q)	23.8(q)	23.8(q)
C(19)	184.0(s)	183.3 (s)	180.7(s)	180.4(s)	180.6(s)	180.4(s)	180.3(s)
C(20)	16.0(q)	23.6(q)	15.4(q)	15.3(q)	15.4(q)	15.4(q)	15.5(q)
C(1')			167.7 (s)	167.7 (s)	166.8(s)	166.7(s)	166.7(s)
C(2')			128.0(s)	128.8(s)	118.4(d)	118.3(d)	118.2(d)
C(3')			138.0(d)	137.4 (d)	145.1(d)	145.1 (d)	145.2(d)
$Me(4')$ or C_{inso}			15.7(q)	14.4(q)	134.5(s)	134.7 (s)	134.4(s)
$Me-C(2')$ or C_o			20.6(q)	12.0(q)	128.1(d)	128.1(d)	128.1(d)
C _m			.17	.17	128.8(d)	128.9 (d)	128.9 (d)
C_p					130.3 (<i>d</i>)	130.3 (<i>d</i>)	130.3 (<i>d</i>)

Table 2. ¹³C-NMR Data (CDCl₃) of Compounds 3-9. δ in ppm.

 $^{\rm a})$ Measured at 100 MHz. $^{\rm b})$ Measured at 75 MHz. $^{\rm c})$ Measured at 150 MHz.

Fig. 1. Key HMBCs $(H \rightarrow C)$ of compound 8

formula $C_{29}H_{34}O_5$, which indicated 13 degrees of unsaturation. The IR spectrum showed absorptions at 3375 (OH), 1710 (C=O), and 1662 and 1453 cm⁻¹ (aromatic C=C). The presence of a cinnamate ester moiety was supported by NMR data (*Tables 1* and 2). Besides this ester moiety, the remaining twenty C-atoms included a trisubstituted C=C bond (δ (H) 6.59 (br. *s*); δ (C) 161.0 (*d*) and 148.8 (*s*)), a COOH group (δ (C) 180.3 (*s*)), an aldehyde C=O group (δ (C) 189.4 (*d*)), and an O-bearing CH group (δ (H) 4.70 (*dd*, *J* = 4.8, 12.0 Hz); δ (C) 78.6 (*d*)). Further analyses demonstrated

that compound **9** showed a closely similar NMR pattern to that of **8**, besides the existence of a CHO instead of an O-bearing CH₂ group, indicating that compound **9** was an *ent*-kaurane diterpenoid. Based on the HMBCs C(17) (δ (C) 189.4 (*s*))/H–C(13) and H–C(15), the position of the CHO group should be assigned to CH(17). The *a*-orientation of the cinnamate ester moiety of **9** was established by comparison of the H–C(3) coupling pattern (*dd*, *J*=4.8 and 12.0 Hz) with that of **8** (*dd*, *J*=4.2 and 12.0 Hz). Thus, the structure of wedelidin B (**9**) was determined as (3 α)-3-(cinnamoyloxy)-17-oxo-*ent*-kaur-15-en-19-oic acid.

In addition to the above described two new ent-kaurane diterpenes 8 and 9, 18 secondary metabolites were isolated. Based on the spectroscopic analyses and comparison with the literature data, they were determined as ivalin (1) [9], wedeliatrilolactone B (2) [10], ent-kaur-16-en-19-oic acid (3) [11], ent-kaura-9(11),16dien-19-oic acid (4) [12], (3α) -3-(angeloyloxy)-ent-kaur-16-en-19-oic acid (5) [13], (3α) -3-(tiglinovloxy)-ent-kaur-16-en-19-oic acid (6) [2], (3α) -3-(cinnamovloxy)-entkaur-16-en-19-oic acid (7) [2], β -friedelinol (10) [14], friedelin (11) [15], stigmasterol (12) [16], (7α) -7-hydroxystigmasterol (13) [17], (3β) -3-hydroxystigmasta-5,22-dien-7one (14) [18], 3-hydroxy-6-methoxychromen-4-one (15) [19], apigenin (16) [20], diosmetin (17) [21], benzeneacetic acid 2-phenylethenyl ester (18) [22], isocinnamic acid (19) [23], and 4-methoxycatechol (20) [24]. Among these isolates, compounds 1, 4, and 11-20 are reported as secondary metabolites from W. trilobata for the first time. The structures of compounds 2 and 3 were further confirmed by an X-ray single-crystal diffraction experiment for the first time (Fig. 2). Crystals of 2 and 3 were obtained from a solution of CHCl₃/MeOH 1:1. The crystallographic data have been deposited with the *Cambridge Crystallographic Data Centre*¹).

Fig. 2. X-Ray single-crystal structures of compounds 2 and 3. Arbitrary atom numbering.

CCDC-778708 (for 2) and 782281 (for 3) contain the supplementary crystallographic data for this article. These data can be obtained free of charge from the *Cambridge Crystallographic Data Centre via* www.ccdc.cam.ac.uk/data_request/cif.

This work was supported by the *Basic Research Program* (973 Program) of China (No. 2007CB108903), the National Science Foundation of China (No. 20972062 and No. 30970556), and the 111 Project.

Experimental Part

General. Column chromatography (CC): silica gel (SiO₂, 200–300 mesh; Qingdao Marine Chemical Factory, Qingdao, P. R. China). TLC: SiO₂ GF₂₅₄ (10–40 µm, Qingdao Marine Chemical Factory); detection at 254 nm, and by heating after spraying with 98% H₂SO₄ soln./EtOH 5:95 (ν/ν). Optical rotations: Perkin-Elmer-341 polarimeter; in MeOH at 25°. UV Spectra: NewCentury-Pgeneral-T6 spectrophotometer; λ_{max} (log ε) in nm. IR Spectra: Nicolet-Nexus-670 FT-IR spectrometer; with KBr pellets; $\tilde{\nu}$ in cm⁻¹. NMR Spectra: Varian-Inova-300, Bruker-Avance-III-400, and Varian-Inova-600 instruments; δ in ppm rel. to Me₄Si as internal standard, J in Hz. MS: Bruker-Esquire-6000 (ESI) and Bruker-Apex-II (HR-ESI) instrument; in m/z.

Plant Material. The plant material was collected in Haikou City, Hainan Province, China, in June 2008 and authenticated by advanced lab assistant *Qiong-Xin Zhong* of the College of Biology, Hainan Formal University. A voucher specimen (20070805) was deposited with the College of Chemistry and Chemical Engineering, Lanzhou University.

Extraction and Isolation. The air-dried whole plant of W. trilobata (4600.3 g) was powdered and extracted with 95% EtOH (151) three times (each for 7 d) at r.t. and the soln. concentrated to give a crude extract (671.2 g), which was suspended in H_2O (2.5 l) and then extracted with petroleum ether $(60-90^\circ; 3 \times 2.51)$ and CHCl₃ (4×2.01) successively. The petroleum ether extract (180.1 g) was subjected to CC (SiO₂, petroleum ether/AcOEt 40:1, 20:1, 10:1, 5:1, 2:1, and 0:1): Fractions 1-6(monitored by TLC). Fr. 1 (60.7 g) was repeatedly applied to CC (SiO₂, petroleum ether/AcOEt 50:1 \rightarrow 10:1): 3 (10.8 g) and 4 (68.6 mg). Fr. 2 (10.5 g) was also applied to CC (SiO₂, petroleum ether/AcOEt 25:1): 5 (2.1 mg) and a crude crystalline product. The latter was recrystallized from petroleum ether/ AcOEt 1:1: 9 (3.8 g). Fr. 3 (20.4 g) was subjected to repeated CC (SiO₂, petroleum ether/AcOEt $20:1 \rightarrow 5:1$): Frs. 3.1 and 3.2. Fr. 3.1 (10.2 g) was further purified by CC (SiO₂, petroleum ether/AcOEt 10:1): 6 (8.2 mg), 7 (20.6 mg), and 8 (4.6 mg). Fr. 3.2 (0.6 g) was subjected to prep. TLC (CHCl₃/AcOEt 15:1): 10 (4.7 mg) and 11 (33.2 mg). Fr. 4 (3.8 g) was applied to CC (SiO₂, petroleum ether/AcOEt $10:1 \rightarrow 2:1$): Frs. 4.1-4.3. Fr. 4.1 (1.0 g) was further subjected to CC (SiO₂, CHCl₃/AcOEt 15:1 \rightarrow 5:1): 13 (2.9 mg), 15 (6.8 mg), and 17 (9.2 mg). Fr. 4.2 (1.8 g) was also further purified by CC (SiO₂, CHCl₃/ AcOEt $10:1 \rightarrow 2:1$): **1** (1.1 mg), **2** (4.2 mg), and **12** (6.2 mg). Fr. 5 (1.6 g) was subjected to repeated CC $(SiO_2, CHCl_3/AcOEt 15: 1 \rightarrow 3: 1): 16 (8.3 mg), 19 (10.4 mg), and 20 (5.1 mg). The CHCl_3 extract (5.6 g)$ was subjected to repeated CC (SiO₂, CHCl₃/acetone $50:1 \rightarrow 2:1$): Frs. a-d (by TLC). Fr. c (1.9 g) was further purified with CC (SiO₂, CHCl₃/CH₃OH 20:1): 14 (3.0 mg) and 18 (5.6 mg).

Wedelidin A (=(3α)-3-(Cinnamoyloxy)-17-hydroxy-ent-kaur-15-en-19-oic Acid = (3α)-17-Hydroxy-3-{[(2E)-1-oxo-3-phenylprop-2-en-1-yl]oxy}-ent-kaur-15-en-19-oic Acid; **8**): White amorphous powder. [a]₂₅²⁵ = -8.2 (c = 0.1, MeOH). UV (MeOH): 207 (3.25), 274 (3.37). IR (KBr): 3347, 2962, 2931, 2868, 1708, 1567, 1470, 1311, 812. ¹H-NMR (300 MHz, CDCl₃): Table 1. ¹³C-NMR (75 MHz, CDCl₃): Table 2. HR-ESI-MS: 487.2445 ([M + Na]⁺, C₂₉H₃₆NaO⁺₅; calc. 487.2455).

Wendelidin B (=(3a)-3-(Cinnamoyloxy)-17-oxo-ent-kaur-15-en-19-oic Acid = (3a)-17-Oxo-3-{[(2E)-1-oxo-3-phenylprop-2-en-1-yl]oxy]-ent-kaur-15-en-19-oic Acid; **9**): White amorphous powder. [a]_D²⁵ = -6.1 (c = 0.1, MeOH). UV (MeOH): 215 (3.11), 275 (3.09). IR (KBr): 3375, 2925, 1710, 1662, 1453, 1070, 1026, 768. ¹H-NMR (600 MHz, CDCl₃): Table 1. ¹³C-NMR (150 MHz, CDCl₃): Table 2. HR-ESI-MS: 463.2483 ([M + H]⁺, C₂₉H₃₅O⁺₅; calc. 463.2479).

REFERENCES

- [1] Q. T. That, J. Jossang, A. Jossang, P. P. N. Kim, G. Jaureguiberry, J. Org. Chem. 2007, 72, 7102.
- [2] F. Bohlmann, J. Ziesche, R. M. King, H. Robinson, *Phytochemistry* 1981, 20, 751.
- [3] T. H. Nguyen, N. V. Huynh, T. Q. Ton, K. P. P. Nguyen, Tap Chi Hoa Hoc 2006, 44, 91.

- [4] H. Zhu, R. J. Ma, S. T. Wu, Q. Y. Pang, Food Sci. 2009, 30, 52.
- [5] M. L. Wu, D. Z. Zhang, Pharm. Today 2008, 18, 21.
- [6] J. J. Chen, Z. M. Li, K. Gao, J. Chang, X. J. Yao, J. Nat. Prod. 2009, 72, 1128.
- [7] C. M. Liu, H. X. Wang, S. L. Wei, K. Gao, Helv. Chim. Acta 2008, 91, 308.
- [8] H. X. Wang, C. M. Liu, Q. Liu, K. Gao, Phytochemistry 2008, 69, 2088.
- [9] G. Topçu, S. Öksüz, H. L. Shieh, G. A. Cordell, G. M. Pezzuto, B. J. Candan, *Phytochemistry* 1993, 33, 407.
- [10] D. T. Ferreira, A. R. Levorato, T. D. J. Faria, M. G. De Carvalho, R. Braz-Filho, Nat. Prod. Lett. 1994, 4, 1.
- [11] W. Herz, P. Kulanthaivel, Phytochemistry 1984, 23, 2271.
- [12] S. F. Farag, H. A. Hassanean, M. A. Makboul, N. A. El-Emary, M. Niwa, Bull. Pharm. Sci., Assiut Univ. 1998, 21, 81.
- [13] R. Batista, E. Chiari, A. Braga de Oliveira, Planta Med. 1999, 65, 283.
- [14] J. Q. Liu, J. M. Wu, X. L. Kou, Q. Hong, J. Chin. Med. Mater. 2008, 31, 1505.
- [15] D. D. Chiozem, H. Trinh-Van-Dufat, J. D. Wansi, D. C. Mbazoa, V. S. Fannang, E. Seguin, F. Tillequin, J. Wandji, *Chem. Pharm. Bull.* 2009, 57, 1119.
- [16] S. C. Pu, Y. Q. Guo, W. Y. Gao, Chin. Tradit. Herb. Drugs 2009, 40, 363.
- [17] Y. H. Lan, H. Y. Wang, C. C. Wu, S. L. Chen, C. L. Chang, F. R. Chang, Y. C. Wu, Chem. Pharm. Bull. 2007, 55, 1597.
- [18] L. H. Yan, L. Z. Xu, Z. M. Zou, S. L. Yang, Chin. Tradit. Herb. Drugs 2007, 38, 340.
- [19] P. Pfeiffer, H. Oberlin, E. Konermann, Ber. Dtsch. Chem. Ges. (B Series) 1925, 58, 1947.
- [20] Q. Li, Q. M. Xu, L. L. Hao, B. F. Lu, S. L. Yang, X. R. Li, Chin. Tradit. Herb. Drugs 2009, 40, 369.
- [21] G. N. K. Kumari, L. J. M. Rao, N. S. P. Rao, Proc. Indian Acad. Sci., Chem. Sci. 1986, 97, 171.
- [22] I. Yukhnovski, A. F. Nazir, M. Sakhatchieva, J. Kaneti, I. Binev, Izv. Khim. 1981, 13, 269.
- [23] F. B. L. Warnaar, Phytochemistry 1984, 23, 1049.
- [24] P. Sampson, M. Crook, A. Piorko, J. Heterocycl. Chem. 1994, 31, 1011.

Received August 10, 2010